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An Algorithm for Finding the Intersection of Molecular Structures 
By Malcolm Bersohn, University of Toronto, Toronto, Canada M5S 1A l  

A computer can be used to find the largest common fragment of two molecular structures, by a method which 
initially constructs a list of those atoms in one molecule which have a matchingatom in the other molecule and 
whose neighbours match the corresponding neighbours in the other molecule. Forming the set of all atoms which 
are on this list and whose neighbours are on the list produces a new list. Next we form the set of al l  atoms which 
are on the new list and whose neighbours are also on the new list. After a very few interations of this process we 
are left with a short list, usually a single atom, which is the centre of the intersection. The atom central to an inter- 
section having been determined, finding the intersection specifically is then a brief process. 

IF we consider a molecular structure as a graph, i.e. as a 
set of connections, devoid of stereochemistry, then we 
can define the greatest common subgraph of two mole- 
cules as follows. It is a graph such that if any two ver- 
tices (atoms) i and j have an edge joining them in the 
subgraph, then there is an edge joining the corresponding 
vertices i’, j ’  in one molecule and an edge joining the cor- 
responding vertices i”, j” in the other. Further, there 
exists no subgraph with this property that has more 
vertices. The definition of the greatest common frag- 
ment, or intersection, of two molecules is the same as that 
of the greatest common subgraph except that stereo- 
chemistry is normally included. If i a n d j  are cis in the 
subgraph then the corresponding atoms i’ andj’  must be 
cis in one molecule and the corresponding atoms it’ and 
j ”  must be cis in the other molecule. Further, if atom i 
of the intersection has ligand atoms a,  b, c, and d, with 
a, b, and c arranged in clockwise order when viewed 
along the vector from i to d,  then the corresponding 
ligand atoms of atom i’, i.e. a’, b’, and c’, will be arranged 
in clockwise order when viewed along the vector from i’ 
to d’. The ligand atoms of atom i” in the other mole- 
cule will be arranged correspondingly. 

Finding the intersection of molecular structures is of 
course trivially easy for a human brain. The difficulty in 
this area only arises when we need to put a method into a 
computer program. This requires an exact prescription, 
certain to work, i.e. an algorithm. Furthermore, the 
algorithm ideally should be efficient. It can be shown 
that the time required to find the intersection of two 
molecules need not increase exponentially or as the fac- 
torial of the number of atoms involved. I t  need only 
depend on a small power of this number. 

There are at  least five situations in which it is useful to 
use a computer to find the intersection of two molecules, 
as follows. 

(1) We are given a long list of molecules, all of which 
have some interesting common property, such as 
biological activity, and we would like to find the inter- 
section substructure. The intersection of the first two 
molecules is used as a substructure and mapped onto sub- 
sequent molecules to find the next intersection. With 
each successive mapping, the common fragment can only 
remain constant or decrease in size. 

(2) We are given a molecule to be synthesized and a 

list of molecules which, inter aha, may serve as starting 
points for a synthesis. A reasonable starting material 
would be that substance which has the most important 
intersection with the product. ‘ Most important may 
simply mean having the greatest number of atoms, or i t  
may mean having the greatest number of functional 
groups or steric relationships. 

(3) We are given a particular molecule as starting 
substance for the synthesis of another substance and wish 
to find those atoms which are superfluous and should be 
removed in the course of the synthesis. These atoms are 
simply all those which are present in the starting material 
but not contained in the intersection of the starting 
material and the substance to be synthesized. 

(4) We are given the product of a reaction in which two 
sites are required to be equivalent in the reactant, e.g. the 
a-carbon atoms of a ketone. Since we are examining 
the product, the two a-carbon atoms are no longer 
equivalent. We then exclude the entering atom that 
formed a bond to one of the carbon atoms a to the ketone 
carbonyl carbon. Excluding this entering atom, we 
can now find out if the resulting fragment can be mapped 
onto itself in such a way that the two a-sites are equiv- 
alent (within one hydrogen atom). In order words we 
find the intersection between one half of the fragment and 
the other. This is by far more rapid than actually 
forming the connection table of the reactant ketone, 
canonicalizing it and seeing whether the two a-carbon 
atoms are equivalent. 

(5) We are given product(s) and reactant(s) and wish 
to find the unchanged moiety, so as to deduce the reaction 
centre. The unchanged moiety is precisely the inter- 
section of the product and the reactant.l The remain- 
ing atoms are involved in the reaction. 
Preliminary Definitions.-In almost all this discussion, 

the word atom means an atom other than hydrogen. 
By terminal atoms we mean atoms which have only 

one non-hydrogen neighbour, such as methyl carbon, 
hydroxylic oxygen, carbonyl oxygen, amino nitrogen, 
halogens in their usual monovalent state, terminal 
methylene, etc. 

Intersections are of two kinds, connected and uncon- 
nected. For connected intersections, a path can be found 
between any two atoms. If the intersections are un- 
connected there are at  least two distinct pieces. Con- 
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sider, for example, 4-nitro-4'-fluorobiphenyl (1). This 
has a significant intersection with 1-(4-nitrophenyl)-2- 
(4-fluoropheny1)ethane (2). If we consider only the 
connected intersection then we decide that the inter- 
section is the 4-nitrophenyl group. On the other hand 
the unconnected intersection consists of the two benzene 
rings and their heteroatom substituents. This raises the 

( 2 )  

question of the minimum size of each piece. If we place 
no restriction on the minimum size of each matching 
piece then in the extreme any pair of isomers, containing 
n atoms, has a trivial unconnected intersection con- 
sisting of n separate atoms. I t  is precise and con- 
venient therefore to speak of an unconnected intersection 
of minimum order k ,  where k is the smallest number of 
atoms acceptable in any one of the pieces. In the 
above example, the intersection consisting of the two 
separate benzene rings and their heteroatom substituents 
is an intersection of minimum order 7 ; the 4-fluorophenyl 
part contains 7 atoms. 

In the above we have used the idea of the correspond- 
ence of atom i in one molecule and atom j in another 
without stating how this correspondence is determined. 
In the strictest and most usual sense, i .e. the exact 
match, atoms of different molecules ' match ' only if they 
have the same number of attached hydrogen atoms, the 
same degree of unsaturation, the same atomic number 
and the same chirality. Furthermore, if i is c i s  or trans 
to an atom j then i' must be cis or trans, respectively, to 
an atom j '  which has the same atomic number, number 
of attached hydrogen atoms, degree of unsaturation, and 
chirality as atom j .  The degree of unsaturation is 
specified as saturated, aromatic, doubly bonded, twice 
doubly bonded, as in an allene or ketene, or triply 
bonded. 

It is also possible to use a skeletal match, i .e .  to define 
as matching any two atoms which have the same atomic 
number and the same number of cyclic neighbours. 
Using the skeletal match we obtained the familiar 
tetracyclic skeleton (3) as the intersection of all 
steroids . 

We can also use a functional match, i.e. we can define 
as matching any two atoms which have the same atomic 
number and which are either both functionalized or both 
non-functionalized. A functionalized atom is un- 
saturated and/or has a heteroatom neighbour. Using 
the functional match, the three carbon atoms of 2- 
chloropropane correspond to the three carbon atoms of 

acetone. A host of other matches can be defined. For 
synthesis purposes we may want to permit functionalized 
atoms to match non-functionalized atoms if the function- 
ality is a carbon-carbon multiple bond or is allylic or 
benzylic. 

Some atoms are peripheral to a molecular intersection. 
If an atom a in A is not part of the intersection of A and 
B, but its neighbour c is part of this intersection, then, 
for some purposes, we may wish to include atom a in 
the intersection, after the true intersection has finally 
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been determined. A requirement for this is that there 
must be an atom b which partly matches a and which is a 
neighbour of the atom d in B which matches atom c. 
As an example, consider the intersection of toluene and 
ethylbenzene. The benzylic carbons do not agree in the 
number of hydrogen atoms hence the exact intersection 
consists of the two phenyl groups. However, if we wish 
to modify the definition of intersection slightly, we can 
include, in the final stage, such peripheral atoms, which 
agree in atomic number but not in all other respects, e.g. 
the degree of unsaturation, the chirality, and the number 
of attached hydrogen atoms. Thus, using this new 
definition, the intersection now consists of the group 
Ph-C. Similarly the intersection of acetaldehyde and 
acetone can be either an acetyl group or a methyl group 
depending on whether or not we include the peripheral 
atom. We will refer to peripheral atoms which match 
with their corresponding peripheral atoms in the other 
molecule in their atomic number but not in all other 
respects, as semi-matching peripheral atoms. 

We will assume in all this discussion that the atoms of 
the molecules concerned have been numbered by a 
canonical procedure and that in the process of canonic- 
alizing the structure representation the atoms have been 
partitioned into equivalent classes. Unique atoms are in 
equivalence classes consisting of only one member. If 
there is for example one t-butyl group in the molecule and 
the methyl carbon atoms are numbered 26, 27, and 28 
then atom 26 is the ' first ' member of its equivalence 
class. In mapping problems we will often be concerned 
only with the first member of an equivalence class. 

Finally, we define what is meant by an atom central to 
an intersection. It is the atom of the intersection which 
is furthest from any non-matching atoms. By furthest, 
we mean separated by the greatest number of bonds, not 
separated by the longest distance in space. Consider 
for example the intersection of cyclohexyl bromide and 
cyclohexanone. This intersection consists of a string of 
five methylene carbon atoms. The centre of the inter- 
section is C(4), since the non-matching atoms are three 
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atoms away, whereas there are no other atoms in the 
intersection which are three atoms away from the non- 
matching atoms, i.e. C(1). 

The Direct Algorithm.-Since there are many con- 
ceivable atomic matches, there are in principle many 
different kinds of intersections and therefore many dif- 
ferent algorithms for finding them. However, we can 
simplify matters. Let us first suppose that we are seeking 
a connected intersection, that is, the result will be only 
one fragment. Further, let us ignore the detailed content 
of the atomic match, i.e. whether it is exact, skeletal, 
functional, efc. Then from this viewpoint we can dis- 
tinguish two approaches, the direct method and a method 
to be described herein which requires a preliminary 
search for the centre of the intersection. 

The direct method begins by considering each of the m 
atoms of molecule A in turn and determining with which 
of the n atoms of molecule B there is a match. In this 
way we obtain a list of ordered pairs (a, b) in which a 
is an atom of A and b is an atom of molecule B. The 
correspondence can be many-to-many. For example 
atom 1 of A can match atoms 2, 6, and 8 of B and atom 2 
of B can match atoms 1 and 5 of A. 

For each of the ordered pairs (a, b) on this list we try 
to obtain an ordered quartet (a, b, c, d) such that a and 
c are neighbouring atoms of A, b, and d are neighbouring 
atoms of B, a matches b, and c matches d. If there is 
any ordered pair (a, b) for which we cannot find such a 
quartet then we strike it from our list of potential inter- 
sections. For example the amino-group of a primary 
amide would match that of a primary amine but a 
matching two-atom fragment starting with the amino 
nitrogen cannot be found. 

In any practical implementation of this algorithm we 
will want to eliminate duplicates, such as (a, b, c, d) and 
(c, d, a, b). Also if the molecule has any symmetry, 
e.g. a and e are equivalent, then we should eliminate, a t  
the beginning, all ordered pairs whose left member is e. 
Further, if b and x are equivalent atoms in B then we 
will want to rule out the inclusion of both (a, b) and 
(a, x) in the list of matching pairs. 

Again for each of the ordered quartets (a, b, c, d) we 
try to obtain an ordered sextet (a, b, c, d, e, f )  such that 
a and c are neighbours in A, c and e are neighbours in A, 
b and d are neighbours in B, d and f are neighbours in 
C, a matches b, c matches d, and e matches f. We con- 
tinue in this way, finding ever larger multiplets until we 
can no longer do so. The longest multiplets thus ob- 
tained are the desired intersections. 

The direct method of finding molecular intersections is 
quite expensive with regard to computer time, Much 
effort is spent in exploring match possibilities which sub- 
sequently fail, there is no looking ahead, and we are con- 
stantly required to check whether an atom being con- 
sidered is or is not already in our multiplet. The 
direct method has been implemented in various programs, 
for example in that of Varkony et al.2 

The Algorithm with a Preliminary Search for the 
Centre of the Intersection.-The method with a pre- 

liminary search attains the look-ahead capability by 
seeking, at  first, not the details of which atoms in a frag- 
ment of molecule A match which atoms of a fragment of 
molecule B. Instead, what is sought is the identitity of 
an atom in A which is the centre of an intersection, i.e. 
for which we are assured that the neighbours have a cor- 
responding match in B and the neighbours of these 
neighbours have a corresponding match in B, and so on 
to the greatest extent possible. When this central atom 
is found, finding the details of the intersection is simple, 
without any backtracking being necessary. 

The method with a preliminary search begins by build- 
ing a list of ordered pairs (a, b) for all non-terminal 
atoms a in A such that there is a matching atom b in B 
and there is at  least one one-to-one matching correspond- 
ence between the neighbours of a and the neighbours of b. 
This means that if the neighbours of atom a are i, j, k, 
and 1 and the neighbours of b are w, x, y, and z then i 
matches w, j matches x, k matches y, and 1 matches z. 
I t  may also be true that i matches x and j matches w 
but this is of no consequence. We are assuming, of 
course, that the connection tables representing the 
structures of A and B have been canonicalized according 
to the same algorithm, so that i is the neighbour of atom 
a which ranks highest according to the canonicalizing 
algorithm, and w is the neighbour of b which ranks 
highest according to the same algorithm and so forth for 
the remaining neighbours. We also take advantage of 
any symmetry, i.e. if there is a set of equivalent atoms in 
A then only one of the set may appear as a left member of 
any ordered pair on the list. Similarly only one of a 
set of equivalent atoms in B may appear as a right 
member of any order pair on the list. The question of 
equivalence of atoms must be decided by a previous sub- 
program which has canonicalized the connection tables 
and decided which atoms of each molecule are equivalent 
to each other. 

If every atom in both molecules appears on the list 
then we must use an alternative method for finding the 
centre of the intersection. This rare situation will be 
discussed later. 

We next build List 
2. List 2 consists of all those ordered pairs (a, b) which 
are on List 1 but which have the additional property that 
the neighbours of atom a also appear as left members of 
ordered pairs on List 1 and the neighbours of atoms b also 
appear as right members of ordered pairs on List 1. If 
an atom has two or three equivalent neighbours then it is 
sufficient that one of these neighbours appears on the list. 
By the restriction in the previous paragraph, it is im- 
possible for two equivalent neighbours both to be on the 
list. 

Each ordered pair in List 1 actually signifies matching 
fragments of at  least three atoms. Since a is non- 
terminal it has two neighbours and each of these has a 
separate match among the neighbours of b. Each ordered 
pair in List 2 signifies matching fragments of at  least five 
atoms. At the middle of these five or more atoms in A 
is the left member of the ordered pair (a, b). The atom b 

Let us call this initial list. List 1. 
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is at the middle of a matching fragment of five or more 
atoms in molecule B. 

If List 2 has more than one ordered pair then we build 
List 3 as follows. An ordered pair (a, b) can be on List 
3 if it is on List 2 and if the neighbours of atom a are also 
left members of ordered pairs on List 2 and the neigh- 
bours of atom b are also right members of ordered pairs 
on List 2. If List 3 has more than one ordered pair we 
build List 4 from List 1 in the same fashion. Each new 
list signifies matching fragments which are larger by at 
least two atoms than the previously detected matching 
fragments. Also each new list has many fewer members 
than the preceding list. This contrasts with the direct 
method, in which the space of partially matching frag- 
ments explored tends to expand during the first one or 
two iterations. Soon we arrive at a list which is null or 
has one ordered pair. The last list before the null list 
contains ordered pairs each of which is the centre of a 
separate but equal-sized molecular intersection. If the 
final list has just one pair, (a, b), then atom a (and atom 
b in its molecule) is the centre of a single intersection 
substructure. 

Taking the example of finding the intersection of 
toluene and ethylbenzene, we see that the first list con- 
sists of the five ring carbon atoms each of which bears a 
hydrogen atom. If we use the exclusions of symmetry in 
molecule B, the first list consists of nine pairs, namely 

(4, 4‘). The numbers for the atoms are the standard 
IUPAC numbers for the ring atoms. The neighbours of 
atoms 2 in toluene do not all appears as left members of 
ordered pairs on this list. Atom 1 is absent. Hence, 
when we build the next list, all ordered pairs beginning 
with 2 are deleted. Similarly, atom 2 in ethylbenzene 
has a neighbour, atom 1, which does not appear as a 
right member on the list; hence all ordered pairs ending 
with 2’ are deleted in building the second list. As a 
result the second list consists only of the meta and para 
carbon atoms, i .e. the four pairs (3, 3’), (3,4‘), (4, 3’), and 
(4, 4’). Evidently atom 3 has neighbour 2 which does 
not appear on this list and atom 3’ has neighbour 2’ which 
does not appear on this list. Therefore in building the 
next list, we must delete pairs which have left member 3 
or right member 3’. This leaves only the pair (4, 4’). 
Atom 4 has a neighbour 3 which is on the list and another 
neighbour 5 which is equivalent to 3; hence atom 4 is 
acceptable for inclusion on the next list, and so, similarly, 
is 4’. We conclude therefore with the short list (4, 4’) of 
the para-atoms. When a list contains only one ordered 
pair then we do not have to attempt to build the next 
list since the latter must be null. 

Having determined one or more atoms each of which 
is the centre of a molecular intersection, we proceed to 
generate the list of the corresponding atoms in the inter- 
section. We begin this list with the centre and add 
neighbours of atoms of A on the list together with their 
matching neighbours of the corresponding atoms in B. 
Thus, from (a, b) we proceed to (a, b), (i, w), (j, x), (k, y), 
(1, z). We then examine i, j, k, and 1 in order to find 

(2, Z’), (2, 37, (2,4‘), (337,  (3,3’), (3,4’), (4,2’), (493% and 

new neighbours of theirs which have matching atoms 
among the neighbours of atoms w, x, y, and z in B. We 
continue in this way until all the atoms of A in the inter- 
section have had their neighbours inspected for matches 
with the neighbours of the corresponding atoms in B. 
When this is so we are finished and the intersection is 
found. There may be more than one intersection found, 
but the intersections will be of the same size. Since 
each atom of A can appear no more than once as a left 
member of an ordered pair in the list, and each atom of B 
may also appear no more than once as a right member of 
an ordered pair on the list, in programming the algorithm 
a bit array or its equivalent must be established which 
tells whether or not an atom has been placed on the list 
previously. 

In the example of the intersection of toluene and 
ethylbenzene, we begin with the para carbon atoms, then 
add the weta carbon atoms, then the ortko carbon atoms, 
and finally the remaining aromatic carbon atom. Note 
that the aromatic atoms C ( l )  match and are included in 
the intersection, despite the fact that they were not put 
on the first list, since their saturated carbon neighbours 
do not match. 

Let us now consider a more lengthy problem, that of 
finding the intersection of the two steroids, (A) and (B). 

21 
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In this case, using the numbers shown for the acyclic 
atoms and the standard IUPAC steroid numbering for 
the cyclic atoms, we find List 1 to be: 1 : 1, 2 : 2, 3 : 3, 
4 : 4 , 5 : 5 ,  6 : 6 ,  10:10, 11:11, 11:15, 12:12, 15:11, 
15 : 15, 16 : 2. We use a colon in each pair to mean 
‘ corresponds to ’. The left member of each pair is the 
number of an atom in molecule A and the right member 
is the number of a corresponding atom in molecule B. 
Note that the pair 7 : 7 is not on the list because atom 7 
in A is adjacent to an atom of R chirality and atom 7 in 
B is adjacent to an atom of S chirality. 

List 2 in this example is 1 : 1,2  : 2,4  : 4 , 5  : 5 , 6  : 6 , 7  : 7. 
List 3 is null. 

The last non-null list is thus List 2. We begin by 
selecting the first pair on this list, 1 : 1, as the centre of 
the intersection, the beginning point for building up the 
list of corresponding atoms. Our survey of the neigh- 
bours of atom 1 in A and the corresponding atom 1 in 
B gives us 1 : 1, 2 : 2, 10 : 10. Collecting the matching 
neighbours of these atoms gives 1 : 1, 2 : 2, 3 : 3, 5 : 5, 
9 : 9, 10 : 10, 18 : 18. One more iteration provides 1 : 1, 
2 . 2 ,  3 : 3 , 4 : 4 , 5 : 5 ,  6 : 6 ,  9 : 9 ,  10:10, 11:11, 18:18. 
We continue to expand in this fashion until we reach 
t h e l i s t 1 : 1 , 2 : 2 , 3 : 3 , 4 : 4 , 5 : 5 , 6 : 6 , 7 : 7 , 9 : 9 , 1 0 : 1 0 ,  



11 : 11, 12 : 12, 13 : 13, 14 :  14, 15 : 15, 16 : 16, 18:  18, 
19:  19. No atom on this list has any neighbour 
not on the list which will match the corresponding 
neighbour of the corresponding atom in the other mole- 
cule. Hence we have come to the end. If we add 
peripheral atoms which have the same atomic number 
then we introduce the pairs 8 : 8 and 17 : 17 before 
exiting. The other pairs of List 2, i.e. 2 : 2, 4 : 4, 6 : 6, 
and 7 : 7, are all present in this intersection, hence there 
is no need to use them as starting points. There is no 
other equal intersection . 

There is a resemblance between this method of finding 
the intersection of molecules and the Morgan method of 
numbering the atoms of molec~les.~ Morgan’s method 
and all methods which use extended properties essenti- 
ally avoid a detailed examination of remote  situation^.^-^ 
It is enough to know that properties of remote atoms are 
reflected in certain sums which are accumulated for each 
atom via the previous sums for its neighbours. Suppose, 
for example, after k - 1 iterations of a sum algorithm, 
atoms X and Y of a molecule still have identical sum 
values. On the kth iteration the sum for X becomes 
greater than that for atom Y. It is enough to know 
that somewhere k atoms away from atom X the atoms 
have higher ranking in atomic properties than the set of 
atoms which are k atoms away from atom Y .  I t  is un- 
necessary to trace the exact path. We are assured that 
then X outranks Y and should precede it in the con- 
nection table. Similarly, in the present case it is enough 
to know that if we have ordered pairs (a, b) and (m, n), 
and after k iterations we can include (a, b) on a list but 
must exclude (m, n) because not all the neighbours of m 
are on the previous list, then at  a distance of k atoms out 
on the tree emanating from a the atoms all match cor- 
responding atoms on a tree emanating from b in B, 
whereas somehow not all the atoms on the same size tree 
emanating from m in A match a corresponding atom on a 
tree emanating from n in B. This decides that (a, b) is 
included in the new list and (m, n) is not. Again, it is 
unnecessary to know where in the environment of m this 
mismatch occurs. 

This algorithm assumes two connected fragments. 
The extension to non-connected fragments is straight- 
forward. We examine lists of equivalent pairs, both the 
final list and the one prior to it, seeking atoms which are 
not part of the first intersection. As soon as we have 
found one, we know that we have the centre of a separ- 
ate matching fragment. This separate fragment is 
assembled as before, growing out from the centre, and if 
it has the minimum requisite number of atoms the frag- 
ment is added to the original intersection as part of the 
larger, unconnected intersection. 

We note that by implicitly demanding at the beginning 
of the preliminary search that the atoms of List 1 must 
be the centres of matching fragments a t  least three atoms 
in size, we preclude the possibility of discovering any 
two-atom intersection. This is a small loss as not many 
applications would require intersections as small as 
two atoms. If we were interested in terminal two-atom 

intersections, such as FC-, then we could relax the 
restriction that the first atoms to be put on List 1 must 
be terminal. In such a case, since the carbon atom 
adjacent to the fluorine atom has a match in B the 
fluorine atom can be considered as a potential centre of 
an intersection. If we were finding the intersection of 
ethyl fluoride and fluoroacetone, List 1 would consist only 
of the fluorine atoms. The matching neighbour would 
be the methylene carbon atoms. Similarly, if we were 
looking for the intersection of styrene and propene, List 
1 would consist only of the terminal methylene, and the 
intersection is CH,=CH-. Even with this change in the 
algorithm we still could not find two-atom intersections 
in which both atoms are non-terminal, such as -CH=CH- 
or -Si-C-. We can find all two-atom intersections if we 
change the requirement for inclusion on the initial List 1 
further and admit any matching pairs, regardless of the 
matching of the neighbours. This would be a slower 
algorithm, not necessary for most applications, but still 
much faster than the direct method. 

In the application (3) (above), where the synthetic 
significance of the intersection is more important than 
sheer size, we must modify the basic algorithm described 
here. The simplest way to do this is to exclude from the 
goal molecule structure those parts which lack stereo- 
chemical or functionality features. Then we are con- 
sidering the intersection of various possible starting 
materials with the crucial parts of the goal structure. 

Imtplementation of the Algorithm.-The algorithm has 
been programmed in PL/I. It consists of 220 or so PL/I 
statements. The input is two canonicalized structure 
representations and the output is one or more lists of 
ordered pairs of atom numbers. The basic match is 
exact. Any semi-matching peripheral atoms are in- 
cluded after the exact intersection has been found. As 
a programming detail we note that only two lists are 
kept since the contents of List 3 are stored in the place 
reserved for List 1, the contents of List 4, if any, are 
stored in the place in memory formerly occupied by the 
contents of List 2, and so forth. 

The time required for finding. the intersection of 
toluene and ethylbenzene on an IBM 3033 computer was 
2.9 ms. On the same computer the two intersections 
of cyclopentanone and progesterone were found in 4.0 ms. 
For the direct match, using a previous program in as- 
sembly language, the time required to find such inter- 
sections was of the order of several hundred ms. A copy 
of the PL/I program is available from the author. 

Handling the Exceptional Case.-In a few cases every 
cluster of an atom and its neighbours in either molecule 
corresponds exactly to at least one atom and its neigh- 
bours in the other molecule. Consequently every atom 
in both molecules appears on the initial version of List 1. 
This happens with molecules of high symmetry that are 
homologously related and with certain isomers. An 
example is the pair cyclopentyl bromide and cyclohexyl 
bromide. Another such example is the intersection of 
1,4-dimet h ylnapht halene and 1,5-dimethylnapht halene . 
Since in this situation an attempt to construct the next 
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list would result in a copy of the first list, a t  this point a 
computer program must check that not all atoms of both 
molecules appear on the list. If all the atoms of both 
molecules appear on the list then an exceptional method 
must be called in to find the centre of the intersection. 

The exceptional method is based on a sum algorithm 
for canonically numbering the rows of a molecular con- 
nection table, e.g. that of the present author. The sum 
algorithms are used among other things for determining 
which atoms are equivalent to one another inside a 
molecule. (Uchino has pointed out examples for which 
Morgan’s sum algorithm does not show which atoms are 
equivalent. For all his cited examples a sum algorithm 
which includes ring sizes as part of the atomic properties 
always partitions the atoms correctly into equivalence 
classes. Morgan’s atomic property consisted solely of 
the number of nearest neighbours.) The sum algorithm 
terminates when the number of atoms which have a cor- 
responding equivalent atom in the molecule is zero or 
does not decrease between the nth and the (n + 1)th 
iteration of the summing process. The nth sum for an 
atom includes information about atoms which are n bonds 
away; the (n + 1)th sum includes information about 
atoms which are n + 1 bonds away, etc. Now if we 
compare the sums for corresponding atoms (a, b) of two 
different molecules, then if the sums become different 
only on the (n + 1)th iteration this implies that the en- 
vironments n atoms away for atom a and for atom b are 
indistinguishable. If a,fter the (n + 1)th iteration of 
summing there are no more pairs of atoms (a, b) which 
gave the same sum values and which have consistently 
had the same sumvalues after each iteration, then the 
pair (a, b) which were indistinguishable after the nth 
iteration are precisely the centres of the intersection of 
the two molecules. We may add parenthetically that the 
intersection will consist of at least 2n atoms and the 
longest path in it will consist of no more than 2n + 1 
atoms. 

Appendix 
A Detailed Description of the Bas ic  A 1gorithm.-The 

program receives as input the canonicalized structure repre- 
sentations of molecules A and B. The output of the pro- 
gram is a correspondence list of the form a : a’, b : b’, c : c’, 
elc. where the unprimed symbols are atom numbers of mole- 
cule A and the primed symbols those of molecule B. The 
algol symbol := means ‘ receives the value of ’. Thus 
I : =  0 means I gets the value zero. I:= I + 1 means I 
gets the value of the previous value of I plus one, in other 
words I is incremented by one. A step-by-step description 
of the basic algorithm follows. 

If A and B 
are the same then exit, reporting the correspondence list 
1 : 1 , 2 : 2  , . . . ,  n : n .  

(B) Build List 1. 
(Bl) I:= 0 
(B2) I:= I + 1 
(B3) If the value of I now exceeds the number of atoms 

in molecule A then exit from part B and proceed to step 

(A) Check for identity of molecules A and B. 

(C1). 

(H4) If atom 1 is not the first member of its equivalence 
class in molecule A then go back to step (B2). 

(B5) J : =  0 
(B6) J : =  J +  1 
(B7) If the value of J exceeds the number of atoms in 

(B8) If atom J is not the first member of its equivalence 

(B9) If atom I does not match atom J then go back to 

(B10) if the first neighbour of atom I does not match 
the first neighbour of atom J then go back to (B6). 

(B1 1) If the second neighbour of atom I does not match 
the second neighbour of atom J then go back to (B6). 

(B12) If the third neighbour of atom I exists and does 
not match the third neighbour of atom J then go back to 

(B13) If the fourth neighbour of atom I exists and does 
not match the fourth neighbour of atom J then go back to 
step (B6). 

(B14) Add the pair I : J to List 1 and then go back to 

molecule B then go back to (B2). 

class in molecule B then go back to (B6). 

(B6) * 

(B6). 

(B6) * 
(C) Prune the previous list, producing the current list. 

(Cl) If List 1 is null, then exit from the program, 
reporting a null correspondence list, i.e. no intersection. 

(C2) Q : =  0 
(C3) Q:=Q + 1 
(C4) If the value of (? exceeds the number of pairs on the 

previous list then advance to step (C9). 
(C5) Let I : J be the qth pair of the previous list. If 

any neighbour of I does not appear as a left member of a 
pair on the previous list then go back to (C2). 

(C6) If any neighbour of J does not appear as a right 
member of a pair on the previous list then go back to (C2). 

(C7) Add the pair I : J to the current list. 
(C8) Go back to (C2). 
(C9) If the current list is not null then give the previous 

list the value of the current list, then make the current list 
null, and then return to step (Cl). 

(C10) Since the current list is null, use the previous list 
as the current list. With this done, any pair on the current 
list is the centre of an intersection. 

(D) Construct the final correspondence list(s). 
(Dl) L : =  0 
(D2) L : =  L + 1 
(D3) If the value of L exceeds the number of centres of 

the intersection of the current list produced by part B then 
exit from the program. We have finished. The possible 
intersections are all listed. 

(D4) Start a new list called List n ,  the first pair of which 
is the Lth pair on the ‘ current list ’ produced by part (C). 

(D5) Let this Lth pair be I : J .  I f  the pair I : J appears 
on a previous intersection then go back to (D2). 

(D6) Let I :  J be the first pair on List n. Further 
suppose V is the first neighbour of I and V’ is the first neigh- 
bour of J .  If V matches V‘ and V has never been on List n 
then add the pair V : V’ to the end of List n. 

(D7), (D8), (D9). Do the same as (D11) for the second, 
third, and fourth neighbours of I .  

(D10) Delete I : J from List n and add i t  t o  the cor- 
respondence list of the current intersection. 

(D11) If List n is not null then go back to (D8). 
(D12) List n is null and we have finished the cor- 

respondence list of an intersection. Go back to (D2). 
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